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[1] Moderate Resolution Imaging SpectroRadiometer (MODIS) and Multi-angle Imaging
Spectroradiomater (MISR) provide regular aerosol observations with global coverage. It is
essential to examine the coherency between space- and ground-measured aerosol
parameters in representing aerosol spatial and temporal variability, especially in the climate
forcing and model validation context. In this paper, we introduce Maximum Covariance
Analysis (MCA), also known as Singular Value Decomposition analysis as an effective way
to compare correlated aerosol spatial and temporal patterns between satellite measurements
and AERONET data. This technique not only successfully extracts the variability of major
aerosol regimes but also allows the simultaneous examination of the aerosol variability both
spatially and temporally. More importantly, it well accommodates the sparsely distributed
AERONET data, for which other spectral decomposition methods, such as Principal
Component Analysis, do not yield satisfactory results. The comparison shows overall good
agreement between MODIS/MISR and AERONET AOD variability. The correlations
between the first three modes of MCA results for both MODIS/AERONET and MISR/
AERONET are above 0.8 for the full data set and above 0.75 for the AOD anomaly data.
The correlations between MODIS and MISR modes are also quite high
(> 0.9). We also examine the extent of spatial agreement between satellite and AERONET
AOD data at the selected stations. Some sites with disagreements in the MCA results, such
as Kanpur, also have low spatial coherency. This should be associated partly with high AOD
spatial variability and partly with uncertainties in satellite retrievals due to the seasonally
varying aerosol types and surface properties.
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1. Introduction

[2] Aerosols play an important role in the earth’s energy
budget. Quantifying the radiative effect of aerosols in the
climate system requires knowledge of the spatial distribution,
temporal evolution, and optical properties of atmospheric
aerosols [Kiehl and Ramanathan, 2006]. Currently, our

understanding of aerosol properties relies heavily on remote
sensing measurements from both the space and the surface.
Dedicated satellite instruments, such as Moderate Resolution
Imaging Spectroradiometer (MODIS) and Multi-angle
Imaging Spectroradiometer (MISR), have multispectral
designs and sophisticated retrieval algorithms and provide
global coverage. Their standard products, including aerosol
optical depth (AOD) and Ångström exponent, have been
extensively used in scientific research and model validation
[e.g., Kaufman et al., 2002; Martonchik et al., 2009; Ginoux
et al., 2010; Petrenko et al., 2012] and have boosted the rapid
progress in aerosol science. Yet satellite retrieval of aerosol
properties relies on a series of assumptions such as surface re-
flectance, aerosol models, and cloud screening [Martonchik
et al., 2009; Remer et al., 2005; Levy et al., 2007;
Kokhanovsky et al., 2007], which all contribute to uncer-
tainties in the retrieved product. Surface measurements
using sun photometers make direct measurements of sur-
face radiation and retrieve AOD at higher accuracy. In fact,
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data from Aerosol Robotic Network (AERONET), a global
sun photometer network, are frequently used as ground
truth in the validation of satellite retrievals [e.g., Levy
et al., 2010; Kahn et al., 2010]. However, one limitation
of ground-based data is that these measurements only sam-
ple at specific locations and may not be representative of
the larger-scale variability that the satellite measures.
[3] In assessing the accuracy of satellite retrievals, the data

are usually collocated in space and time with AERONET sta-
tions [e.g., Ichoku et al., 2002; Chu et al., 2002; Abdou et al.,
2005; Kahn et al., 2005]. Other techniques have been devel-
oped to simulate the area that satellites observe by averaging
station measurements in time [e.g., Alexandrov et al., 2002a;
Mace et al., 2006]. On one hand, these comparisons may
overemphasize random measurement noise while neglecting
the spatial representativeness of the retrieved quantity. On
the other hand, while the accuracy of these instantaneous
retrievals is important, many applications, especially those
associated with climate forcing and model validation, often
rely on the variability at larger temporal and spatial scales
(e.g., gridded monthly mean data). For example, many studies
aim at resolving the contribution of aerosols in the current
climate change by looking at long-term aerosol trends using
monthly mean measurements [e.g., Mishchenko et al., 2007;
Kishcha et al., 2007; Kaskaoutis et al., 2011; Yoon et al.,
2012]. In addition, a recent hot topic involves the interaction
between aerosols and climate modes such as the North
Atlantic Oscillation [e.g., Foltz and McPhaden, 2008; Evan
et al., 2009] and El Niño-Southern Oscillation [Tosca et al.,
2010; Li et al., 2011] also requires large-scale observations.
Moreover, gridded monthly mean products are often of
primary interest in validating and constraining aerosol pa-
rameterizations used in general circulation models (GCMs),
since GCMs typically generate monthly mean outputs [e.g.,
Chin et al., 2002; Kinne et al., 2006; Liu et al., 2006; Li
et al., 2010]. Therefore, it is essential for the available mea-
surements to correctly represent large-scale spatial and tem-
poral aerosol variability.

[4] Spectral decomposition techniques provide effective
ways to extract spatial and temporal variability from
multidimensional data sets. In Part I [Li et al., 2013], we
used empirical orthogonal function (EOF) analysis on four
satellite data sets to examine their space-time coherency. We
have demonstrated that the analysis successfully extracted ma-
jor aerosol types and source regions.While the comparison be-
tween leading modes indicated overall good agreement across
the data sets, some differences still exist and ground-based ob-
servations are needed to further investigate the differences and
to determine which data set is more reliable in representing
certain regions or aerosol types. However, EOF analysis on
sparsely sampled surface observations often does not produce
satisfactory results, as the variability from each individual sta-
tion may dominate the global pattern. Maximum covariance
analysis (MCA), also known as singular value decomposition
(SVD), can be viewed as a generalization of EOF to rectangu-
lar cross-covariance matrices between two fields. Since the
two data sets are allowed to have different numbers of spa-
tial locations, it is very suitable for comparing satellite with
ground observations. Also, since the method maximizes the
covariance between two data sets, high variability in indi-
vidual AERONET stations will be effectively filtered by
the better-sampled satellite measurements. Using this tech-
nique, we are able to simultaneously compare the spatial
distribution and time series of aerosol signals. Another ad-
vantage is that the decomposed modes can often be related
to aerosol types and physical phenomena. Furthermore,
relating observations from a single station to larger-scale
satellite data provides insights into the synergy of these
two types of measurements, through (1) verifying the accu-
racy of satellite data using ground observation and (2)
extending the spatial representativeness of ground observa-
tion using satellite data. Nonetheless, the spatial extension
of station data is subject to the accuracy of satellite data
and is only rigorous if there is high confidence in the spatial
retrieval from the satellite. Meanwhile, it is important to
note that this approach does not address any potential bias

Figure 1. Locations and aerosol types of the selected 20 Aerosol Robotic Network (AERONET) stations.
The type information is obtained from García et al. [2012].
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between the data sets, but rather provides a quantitative eval-
uation of the space-time variability of the measurements.
However, since it is this variability that defines the trends
and changes in physical processes that alter the AOD, this
technique provides a powerful tool with which to examine
whether the satellite and correlative ground-based measure-
ments agree on AOD variability.
[5] In this paper, we present comparison between satellite

retrievals of AOD from Aqua-MODIS and MISR, and
AERONET data using the MCA method. The Terra-MODIS
data is not used here mainly because its deep blue product that
covers the desert regions is not as complete as Aqua-MODIS.
To our knowledge, this is the first study applying this tech-
nique to aerosol measurements and data comparison. Our
results indicate an overall good agreement between satellite
and AERONETmeasured AOD and verify many documented
phenomena, which confirms the usefulness of this method in
comparing spatiotemporal variability. Section 2 describes the
data sets used in the study. Section 3 gives a detailed descrip-
tion of the method and the analysis procedure. The results are
presented in section 4. In section 5, we further discuss the
spatial representativeness of the AERONET stations. The con-
clusions are summarized in section 6.

2. Data

2.1. AERONET Sun Photometer Data

[6] Direct measurements from the AErosol RObotic
NETwork (AERONET) [Holben et al., 1998] are usually
considered as ground truth when assessing satellite retrievals
of aerosol properties. The uncertainty of AOD retrieval is
reported to be 0.01 at the visible and near IR wavelengths
and increases to 0.02 in the UV [Eck et al., 1999]. This study
uses AERONET Level 2 quality assured and cloud screened
[Smirnov et al., 2000] monthly mean AOD data from 19 care-
fully selected stations. Because the MCA analysis requires the
construction of the temporal covariance matrix, the primary
selection criterion is the length and completeness of data re-
cords. The qualified stations preferably have less than 10 miss-
ing months from January 2003 to December 2011. However,
four stations: Beijing, Capo_Verde, Dakar, andMongu, which
do not strictly meet the above criterion, are manually added to
account for major aerosol regimes. Figure 1 shows the loca-
tions of the selected AERONET stations and their aerosol
types. The spatial distribution of these stations covers four
major aerosol regimes: dust, biomass burning, urban indus-
trial, and continental background. The determination of the
aerosol type at each station is based on García et al. [2012].
Nonetheless, because our selection criterion places emphasis
on temporal sampling at the expense of spatial coverage, the
selected stations are limited and not all aerosol source regions
and types are represented.
[7] For effective comparison with satellite data, the

AERONET AOD are converted to 550 nm using measure-
ments from 380 nm to 870 nm by applying a second-order
polynomial fitting of ln (AOD) vs. ln (wavelength) [Eck et al.,
1999]. Also, despite the strict selection, several stations still
have missing data for certain months. These gaps are filled
using the multiyear averaged value for that month at that
station, so that the interpolated data should have minimal
influence on both the seasonal and interannual variability.T
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2.2. Satellite Data
[8] In this study, we focus on Level 3 griddedmonthlymean

AOD data fromMODIS onboard the EOS-Aqua platform and
MISR onboard the EOS-Terra platform, for the time period
from January 2003 to December 2011.
[9] The MODIS instrument is a single-view imager with a

swath width of 2330 km and near global coverage of 2 days.
This high sampling frequency captures most of aerosol vari-
ability and microphysics properties. The AOD data used
here belong to Collection 051, available from ftp://ladsweb.
nasacom.nasa.gov/allData/51/MYD08_M3. The data resolu-
tion is 1° × 1°. We select the QAweighted averages (variables
named “*QA_Mean_Mean”), i.e., data with higher QA values
are given larger weights in the averaging [Hubanks et al.,
2008]. To ensure global coverage, we combine ocean, dark tar-
get [Levy et al., 2010; Remer et al., 2008], and deep blue
retrievals [Hsu et al., 2004, 2006] at 550 nm. The combina-
tion of dark target (DT) and deep blue (DB) over land uses
the scheme by Levy et al. [2013], which uses monthly
Normalized Difference Vegetation Index (NDVI) climatology
from MODIS land product as a mask to select the algorithm.
Specifically, if NDVI> 0.3, DT is used. If NDVI< 0.2, DB
is used. And if NDVI lies in between, a simple average of
DT and DB is used. Note that due to the seasonal variation of
surface vegetation, there may be seasonal changes in the data
selected for some AERONET stations. Table 1 lists the data
selected for each station. The MODIS cloud screening scheme
takes advantage of the different spatial variability of clouds and
aerosols [Martins et al., 2002] along with tests of brightness in
visible and infrared channels. We are aware that previous stud-
ies suggested that cloud contamination may still remain in the
quality assuredMODIS product and have developed correction
methods to eliminate the incorrectly cloud screened data [e.g.,
Zhang and Reid, 2006;Hyer et al., 2011]. However, their filter-
ing will eliminate more than half of the data volume and since
spatial coverage is important in our analysis we examined the
data for any obvious dependence on cloud fraction.
[10] This analysis did not reveal any obvious dependence

of MODIS/AERONET AOD difference on cloud fraction,
on the monthly mean scale (Figure not shown). Therefore,
we retain the standard Level 3 product in our analysis without
further filtering. In using spatially and temporally averaged
data such as Level 3 AOD, there is a question whether differ-
ent averaging schemes may introduce sporadic differences in
the final result. As pointed out by Levy et al. [2009], global
mean AOD may vary by as much as 30% simply due to the
way the measurements are aggregated. We have tested the
effects of four different averaging schemes: straight average,
pixel threshold, pixel weighted, and pixel threshold weighted
averaged as described in Levy et al. [2009] by comparing the
analysis results with the QA weighted average and find that
the MCA decomposition results are not sensitive to the de-
tails of the aggregation scheme (figures not shown).
[11] The MISR instrument has nine pushbroom cameras.

The zonal overlap of the common swath of all nine cameras
is at least 360 km in order to provide multi-angle coverage in
9 days at the equator and 2 days at the poles [Diner et al.,
1998]. Compared to the dark target MODIS algorithm, the
multi-angle view of MISR has better capability over bright
surfaces [Abdou et al., 2005; Kahn et al., 2009]; however, its
lower sampling may not fully resolve small-scale variability.
In this study we use version 31 Level 3 gridded monthly

products of the green band (555 nm), available from http://
eosweb.larc.nasa.gov. The original 0.5° × 0.5° data resolution
has been downgraded to 1°× 1°. The rescaling is performed
by assigning equal weights to each subgrid, and the final
1° × 1° grid is considered valid only when more than half of
the subgrids have valid data.
[12] MODIS and MISR have different sampling frequen-

cies due to their different instrumental design. In addition,
MODIS and MISR also use different aerosol models, surface
parameterization, and cloud screening to retrieve aerosol
properties. In this study, we will demonstrate that despite
these differences, both data sets agree well with ground truth
in terms of spatiotemporal variability.

3. Method

[13] Maximum covariance analysis (a.k.a. SVD analysis,
Bretherton et al., 1992; Björnsson and Venegas, 1997) aims
at finding the coupled modes of two data fields by singular
value decomposition of their cross-covariance matrix. Similar
to EOF analysis, this is a dimensional reduction technique, as
the leading modes with largest singular values can recover
most of the variance in the two high dimensional data sets. In
addition, considering two high dimensional data sets X and Y,
each pair of mode xi and yi will have the following properties:
(1) maximizing covariance implies that the leadings xi and yi
have reasonably high correlation and each describes a large
fraction of the variance in X and Y, respectively; (2) xi is corre-
lated with yi but is orthogonal to other modes of Y; (3) each xi is
also orthogonal to the other modes of X, and the same for each
yi. The method has been commonly applied to observations of
two different variables, such as sea surface temperature and sea
level pressure. Here we demonstrate that it is also useful in
comparing two different measurements of the same variable.
The detailed procedure is described as follows:
[14] Assuming two data matrices X and Y. X is satellite data

of dimension N×P (N time measurements at P grid boxes)
and Y is the ground observation of dimension N×Q (N time
measurements atQ locations). After removing the mean from
each time series in X and Y, we begin by constructing the
cross-covariance matrix

C ¼ XTY

[15] Performing SVD on C

C ¼ U ΣVT

[16] U and V are orthogonal matrices whose columns are
singular vectors for X and Y, respectively, and each pair of
singular vectors represents covarying modes between X and
Y. The time series A and B describing how each mode oscil-
lates in time are then found by

A ¼ XU

B ¼ YV

[17] The diagonal matrix ∑ contains singular values in de-
scending order. Let σi denote the i-th element of∑; the fraction
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of squared covariance (SCF) explained by the i-th mode is
given by

SCF ¼ σ2i

∑
N

j¼1
σ2j

[18] The first mode of MCA maximizes the covariance
between the two data sets, the second mode maximizes the
remaining covariance, and so on. In this way, the coherency
of the two measurements is effectively examined by the de-
gree of agreement or correlation between the spatial patterns
and time series of the leading modes.
[19] Moreover, because monthly mean aerosol variability

is usually dominated by strong seasonal cycles, we also per-
form MCA on the anomaly data constructed by removing the
multiyear averaged seasonal cycle. This analysis further iso-
lates aerosol source regions and extracts interannual variability.

4. Results

[20] This section presents MCA results of the full MODIS/
MISR and AERONET data sets, which are dominated by
strong seasonal variability, as well as the anomaly data, which
allow us to compare interannual variability.
[21] The number of MCA modes to examine is primarily

determined by the behavior of the variances explained by
each mode, which is shown in Figure 2. From Figure 2, we
are able to observe that for both MODIS and MISR, the var-
iance dropped from above 10% at Mode 3 to ~5% at Mode 4.
Also, the first three modes account for ~70% of the total var-
iance. Therefore, we focus our discussion on the first three
modes, which are presented in Figure 3. Mode 1 and Mode
2 both exhibit seasonal cycles, while the third mode indicates
semi-annual variability. From Figure 3, it is clearly seen that
both satellite data sets agree well with AERONET in terms of
the spatial pattern and time series. The correlations between
the satellite and AERONET time series for all three modes
are well above 0.75, and the distribution of their spatial sig-
nals is almost identical with only few exceptions. The pat-
terns between MODIS/AERONET and MISR/AERONET
are also quite similar, indicating coherency across the three data
sets. PC 1–3 of MODIS modes (Figure 3a) and MISR modes
(Figure 3b) are highly correlated at 0.99, 0.98, and 0.99,

respectively. The variances explained by MISR/AERONET
modes are comparatively lower because the narrower swath
and longer revisit time ofMISR tend to reduce the temporal rep-
resentativeness of its data and lead to the higher noise ratio.
[22] The MCA patterns and time series of the satellite data

are similar to the EOF analysis of each individual field
presented by Li et al. [2013]. The seasonality represented by
Mode 1 should correspond to the aerosol variability primarily
controlled by meteorological conditions (wind and precipita-
tion, etc.) for the Northern Hemisphere (NH). The positive sig-
nals for the NH in Mode 1 mainly come from dust-dominated
regions of North Africa, Arabian Peninsular, and Central Asia,
and industrial pollution and its transport from North India,
Northeast Asia, and North Pacific. The aerosol loading for
these regions peaks in late spring to summer, in phase with
PC 1. The second mode captures aerosol variability for the
Southern Hemisphere (SH), highlighting biomass burning aero-
sols from South America, South Africa, and Southeast Asia.
Note that the Sahel region also appears in Mode 2 but as a
negative feature. This region is primarily dominated by dust
with seasonal biomass burning activities. The aerosol loading
peaks during the winter months of December to February,
which is out of phase with the SH biomass burning regions
which peak during the August to October months [Ducan
et al., 2003]. Mode 3 captures two regions affected by mixed
aerosol types showing different seasonal variations: Northern
India and the Sahel. The Northern India AOD is dominated
by dust during premonsoon and monsoon seasons [Dey et al.,
2004] and anthropogenic aerosols during the postmonsoon
and winter seasons [Singh et al., 2004]. The Sahel AOD has a
primary peak in the summer influenced by dust from North
Africa and a secondary peak in the winter due to dust and some
biomass burning. In addition, some signals of biomass burning
aerosols from Southeast Asia and South America are also
present in this mode. The peak biomass burning season for
Southeast Asia is from February to April, and that from South
America is from August to October [Duncan et al., 2003].
The annual cycle of PC 3 exhibits two peaks during these two
seasons, respectively. Therefore, it projects on the spatial pat-
tern as positive signals over these two regions.
[23] The above good agreement between both satellite data

sets and AERONET is encouraging. However, it is also worth
noting the differences between the satellite and AERONET
data, as well as those between MODIS and MISR, although
they are not particularly significant. For example, North India
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Figure 2. Variance explained by the maximum covariance analysis (MCA) modes for (a) Moderate
Resolution Imaging SpectroRadiometer (MODIS) and AERONET and (b) Multi-angle Imaging
SpectroRadiometer (MISR) and AERONET, decomposed using the full data sets.
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is a typical region where neither MODIS nor MISR agree well
with AERONET in Modes 1 and 2. This region has highly
varying surface properties and changing aerosol species with
season. Previous studies have found that the MODIS retrievals
tend to overestimate AOD during premonsoon and monsoon
seasons while it underestimates AOD during postmonsoon
and winter seasons [Tripathi et al., 2005; Jethva et al., 2007].
Levy et al. [2010] also indicated that bias in the assumed

aerosol single scattering albedo results in the error of MODIS
AOD over this area. The overestimation of MODIS during
the dust season may lead to its the stronger variability over
North India in Mode 1, while its underestimation during the
winter months may result in its weaker signal inMode 2 for this
region. The performance of MISR over North India is slightly
better for Modes 1 and 2. This should be partly attributed to
its multi-angle design that makes use of directional surface

b

a

Figure 3. The spatial pattern and time series of the first three modes for (a) MODIS/AERONET and (b)
MISR/AERONET, decomposed from the full data set. Spatial distribution of the AERONET results is
superimposed on each satellite map with the same color scale. The number in the upper right corner of each
spatial map shows the variance explained by this mode and the R values in the upper left corner of the time
series plots are the correlation coefficients between the two time series. The red colors on the spatial maps
indicate regions where aerosol optical depth (AOD) varies in phase with the PC time series, while the blue
colors indicate regions where AOD varies out of phase with the PC.
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properties [Martonchik et al., 2004; Prasad and Singh, 2007].
In addition to the above reasons, as we note in section 5, some
of the differences observed for North India may result from the
high spatial variability of aerosol properties and thus low spa-
tial representativeness of the AOD over this area. Another dif-
ference between the spatial patterns of MODIS/AERONET
and MISR/AERONET is that the MISR signal over South
America is weaker in all three modes of Figure 3. Previously,
Kahn et al. [2009] and Shi et al. [2011] pointed out that
the underestimation of MISR over this region is possibly at-
tributed to different cloud screening methodologies, where
MISR might have screened out heavy smoke conditions as
cloud. The low variability identified in the PCs also likely
results from MISR’s conservative cloud screening.
[24] In summary, the MCA validates satellite data in cap-

turing the correct spatial and temporal variability of the
AOD through comparison with ground-based AERONET
data and the general agreement between the satellite data
sets, suggesting that it can provide information on most aero-
sol processes. It also helps to extend station observations to a
larger regional scale. Many previously documented disagree-
ments are also identified through this analysis. These results
suggest that MCA is an effective way to simultaneously com-
pare the spatial and temporal variability in two different data
sets with a focus on the modes that account for most of the ob-
served variance in both fields.
[25] Next, we go on to the examination of interannual var-

iability using AOD anomaly data. We again determine the
number of significant modes to be three based on the large
falloff in the amount of the variance explained from Mode
3 to Mode 4 (Figure 4). The first three MCA modes of anom-
aly data are shown in Figure 5. Because the bulk of the AOD
signal comes from seasonal variability, the noise level is
higher in the deseasonalized data. As a result, the fraction
of squared covariance explained by the dominant modes in
Figure 5 is significantly lower than those shown in Figure 3.
The first three modes account for ~50% of the total variance.
Despite the noise, the spatial and temporal patterns between
satellite and AERONET still agree well. The spatial patterns
appear more isolated showing aerosol source regions sep-
arately, and the corresponding time series captures their
interannual variability.
[26] Mode 1 in Figure 5 of both data pairs is clearly asso-

ciated with biomass burning aerosols over central South
America. The PC of this mode has strong peaks in September
and exhibits strong interannual variability. The positive

anomaly in 2007, followed by two negative anomalies in
2008 and 2009, is consistent with Torres et al. [2010]. The
2010 positive anomaly is likely triggered by the dry condition
and is consistent with CO measurements from Hooghiemstra
et al. [2012]. The second Mode has a positive signal over
Northeast Asia and North Pacific. This region is primarily
dominated by urban industrial aerosols that peak in the sum-
mer, with periodic intrusions of dust in the spring to early sum-
mer [Xin et al., 2007; Yu et al., 2009]. This time series shows a
continuous increasing trend from 2004 to 2007, which is in
line with the previously reported aerosol increase or surface
dimming over East Asia [e.g., Wang et al., 2009; Lu et al.,
2010]. The short-term reduction in 2008 might be attributed
to air quality control measures during the Olympic games
[Wang et al., 2010; Guo et al., 2013] and meteorological
conditions [Cermak and Knutti, 2009; Gao et al., 2011].
Nonetheless, the study time period is still too short to represent
any long-term trends. The third mode appears to be associated
with dust emission over North West Africa and its transport
to the North Atlantic. The strong peak in spring 2010 should
correspond to the unusual dust outbreak in that year [Jung
et al., 2013]. Also, consistent with Figure 3, the first three
modes for MODIS and MISR also agree well in terms of spa-
tial and temporal variability. The correlations between PC 1
and 3 for the MODIS and MISR results are 0.94, 0.87, and
0.94, respectively.
[27] Finally, the spatial signals in the MISR AOD data are,

in general, weaker than those in both the AERONET and
MODIS AOD date. On one hand, many of the isolated re-
gions have been found to have comparatively large MISR-
MODIS discrepancy [Kahn et al., 2009, 2010], which is
confirmed by the MCA results. On the other hand, due to
the narrower swath of MISR, many of its monthly mean
products are averaged from only three to four daily samples.
Therefore, the signals in the MISR anomalies are more likely
to be contaminated by the noise in the measurements. This
raises the question of the temporal representativeness of the
measured quantity, which will be the subject of future study.
Nonetheless, the overall agreement increases our confidence
in using satellite data to study the large-scale interannual var-
iability of major aerosol types and source regions.

5. Discussion

[28] Section 4 presents the results showing good agree-
ment in the large-scale variability of the MCA modes, but
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Figure 4. Variance explained by the MCA modes for (a) MODIS and AERONET and (b) MISR and
AERONET, decomposed using the deseasonalized data sets.
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also reveals places with disagreements. Unlike satellite ob-
servations that have extensive spatial coverage, ground mea-
surements only sample at a specific location. Therefore, the
spatial representativeness of AOD at the AERONET stations,
which reflects local variability, may also contribute to the
differences between the MCA modes of the satellite and
AERONET data. In this section, we examine the spatial rep-
resentativeness of AOD at each AERONET site in order to

provide further insights into the interpretation of the MCA re-
sults. It is important to note that the “spatial representativeness”
does not refer to any specific AERONET station, but rather
to the AOD parameter, i.e., the degree of AOD spatial variabil-
ity around the station. As regions affected by similar aerosol
types or transport mechanisms will have correlated time series
of aerosol properties, the spatial range of the correlated region
is closely related to the scale of aerosol variability and can serve

b

a

Figure 5. The first three MCA modes for the deseasonalized AOD data for (a) MODIS/AERONET and
(b) MISR/AERONET, with AERONET results superimposed. Satellite and AERONET data still agree
well in the deseasonalized modes. The first mode represents interannual variability of South America bio-
mass burning, the second shows pollution and dust around Beijing, and the third captures dust emission and
transport from North West Africa. The red dashed line in the time series of Mode 2 shows the linear regres-
sion trends from 2004 to 2007.
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as a proxy for the representativeness. Therefore, we take a sim-
ple approach by calculating the correlation between the AOD
anomaly time series of each AERONET station and that of
all satellite grid boxes and screening the correlation coefficients
by a threshold of 0.3 and p-value of 0.01. In this way, the area
of satellite data that is highly correlated with the ground station
is considered to be well represented by the AOD measurement
at that station. A similar approach has been implemented by
previous studies such as Hoelzemann et al. [2009] to investi-
gate the representativeness of AERONET measurements in
South America.

[29] In Figure 6, we show two typical stations with good
(Alta_Floresta) and poor (Kanpur) representativeness, re-
spectively, for MODIS and MISR. For Alta_Floresta, the
satellite data over a large area around that station are highly
correlated with AERONET measurement. The correlation in
general decreases with distance, which is an indication of aero-
sol source and transport structure. The spatial correlation
pattern for Alta_Floresta agrees well with Hoelzemann et al.
[2009] results for area with correlation> 0.5. Some differences
from Hoelzemann et al. [2009] may be associated with differ-
ences in record length and study period (Hoelzemann et al.

Figure 6. The spatial representativeness of AOD measurement at two typical stations: Alta_Floresta and
Kanpur. The representativeness is good at Alta_Floresta, with both higher correlation and larger area than
Kanpur. The low representativeness at Kanpur may be due to both high AOD variability and satellite
retrieval uncertainties and may partly contribute to the disagreement between the MCA Mode 1 of
Figure 3. The MISR result is noisier due to its low sampling frequency, which is illustrated in Figure 7.

Figure 7. Averaged monthly mean pixel count map for (a) MODIS and (b) MISR for the study period on
log scale. The pixel count information is not available for MODIS Level 3 deep blue product. MODIS has
significantly more samples for each grid box than MISR due to its wider swath and thus shorter revisit time.
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Figure 8. Spatial representativeness of AOD at all the selected AERONET stations calculated using (a)
MODIS AOD data and (b) MISR AOD data. The majority of the stations have high to moderate represen-
tativeness. These stations also show good agreement in the MCA modes.
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used only biomass burning seasons from 2001 to 2007
while the whole time series from 2003 to 2011 is considered
here). This good spatial agreement between MODIS and
AERONET at Alta_Floresta should be attributed to two fac-
tors: (1) aerosol type does not vary significantly with season
in this part of Amazonia; (2) there is little regional topo-
graphic variation or barriers to meteorological transport of
aerosols. In contrast, the data at Kanpur station is only corre-
lated with MODIS and MISR for the narrow region of
the Indo Gangetic Plain, and the degree of correlation is also
much lower. The low AOD representativeness at Kanpur
may be attributed to two factors: (1) The aerosol types are
highly variable, with coarse mode dust dominating in the
spring, fine mode pollution and biomass burning aerosols
dominating in the winter, and mixtures of fine and coarse
mode during other months [Eck et al., 2010]. Regional to-
pography is also complicated with mountains establishing
natural barriers to aerosol transport. This complexity results
in the highly variable spatial distribution of aerosol proper-
ties, and measurements at a single point cannot fully resolve
the variability of the whole area. (2) The varying aerosol
types and topography result in seasonal variation in aerosol
absorption and size distribution, as well as surface reflec-
tance. All of these factors tend to introduce large uncertainty
to satellite retrievals and thus lead to the low correlation be-
tween AERONET and satellite data. Both the high AOD var-
iability (representation error) and uncertainties in the satellite
retrievals (measurement error) help to explain the poor agree-
ment in Mode 1 and Mode 2 of the MCA results between sat-
ellite and AERONET for Kanpur. However, the contribution
of these two error sources will be analyzed and addressed in
a separate study. Also, note in Figure 6 that MISR appears
to have noisier spatial patterns and lower correlations than
MODIS. This is mainly attributed to its longer revisit time,
which leads to fewer samples in the MISR monthly means.
Therefore, its signal tends to have a greater noise contribu-
tion from instantaneous measurements. Figure 7 shows the
averaged pixel count map for MODIS and MISR monthly
mean data over the study period. It is clear that with its
wider swath, overall MODIS has significantly more samples
for each grid. Nonetheless, the spatial patterns of MISR MCA
modes agree well with AERONET in spite of its low sampling

frequency. This result well demonstrates the usefulness of this
method in extracting signal and reducing noise.
[30] Figure 8 shows the representativeness of all the se-

lected AERONET stations. Focusing on the MODIS maps,
most stations over Northwest Africa, North America, South
America, and Europe have good representativeness, with
both high correlation and wide coverage. The representative-
ness of Asian and South African stations is also reasonable.
Note that the representativeness at Mongu is lower than that
at a nearby station — Skukuza. This may be again partly
due to uncertainties in satellite retrievals. As pointed out by
Eck et al. [2013], Mongu has seasonally varying aerosol sin-
gle scattering albedo while the MODIS retrieval assumes a
constant single scattering albedo. These are also places with
good MCA agreements. Moreover, the spatial representative-
ness of several stations, such as Alta_Floresta, Banizoumbou,
Capo_Verde, Dakar, Beijing, and Mongu, are similar to the
MCA patterns around these areas, which further confirms that
the MCA modes capture regionally coherent aerosol pro-
cesses. In addition to Kanpur, low representativeness is also
found for SEDE_BOKER. However, this station only has
weak signals in the global MCA modes and a closer compar-
ison will require regional analysis.
[31] Meanwhile, it is also important to point out that the

correlation analysis of spatial representativeness may intro-
duce spurious correlations at far away locations due to coher-
ent events or limited sample size. For example, the Kanpur
station appears to be moderately correlated with some area
in Northeast Asia. Further examining the time series of
AERONET at Kanpur and averaged MODIS AOD over the
correlated region in Northeast Asia, we find that this positive
correlation is primarily caused by the strong peak in spring
2003 (Figure 9). The correlation between the two time series
from 2004 to 2011 sharply decreases to 0.025. In addition,
measurements at a few stations, including Solar_Village and
SEDE_BOKER, show correlation with some high latitude
regions. This could be partly due to missing satellite observa-
tions during polar nights and partly associated with limited
temporal sampling (180 month) so that a few coherent data
points significantly affect the correlation. Measurement
at Rimrock station also appears to be correlated with far
away places of Quebec, Canada. Comparison between the
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Figure 9. Time series of AERONET AOD at Kanpur and
MODIS AOD averaged over the Northeast Asia regions that
have correlations with Kanpur. The coherent strong peak in
2003 is responsible for the correlation between Kanpur and
Northeast Asia shown in Figure 8. The correlation between
the two time series from 2004 to 2011 is 0.025.
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Figure 10. Time series of AERONET AOD at Rimrock
and MODIS AOD averaged over the Quebec region that is
correlated with Rimrock. The lack of sampling of MODIS
data during winter and coincident agreements during some
summer months results in the spurious correlation between
these two remote locations.
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AERONET AOD time series at Rimrock and MODIS AOD
averaged over the Quebec region (black box in the Rimrock
panel of Figure 8), as shown in Figure 10. We can see that
Quebec region usually lacks satellite measurements during
the winter months. Some coincident agreements between
MODIS and AERONET AOD during the summer months,
especially the two peaks in 2004 and 2006, result in the spu-
rious correlation. This sampling-related spurious correlation
is a common issue in the construction of background covari-
ance matrix using ensembles for data assimilation
and various localization techniques have been developed
to mitigate this problem [e.g., Evensen, 2003; Buehner and
Charron, 2007; Bishop and Hodyss, 2009]. However, inves-
tigation of localization methods is beyond the scope of the
current study and the readers should focus on the region
surrounding the station in interpreting the representativeness
results. Finally, it should be noted that the AERONET repre-
sentativeness considered here only refers to a space dimen-
sion larger than 1° × 1° scale, for the purpose of facilitating
the interpretation of MCA results. In a different study, we will
perform a more extensive examination of both spatial and
temporal representativeness at a variety of scales.

6. Conclusion

[32] In this study, we introduce the MCA method as an
effective way to examine the spatiotemporal coherency be-
tween satellite and ground observations of aerosol optical
depth. The major advantages of this approach include: (1)
verifying satellite data by finding the correlated modes with
ground observation, and these modes also represent most of
the variance in each individual field; (2) relating the compar-
ison to aerosol types, sources, and physical phenomena.
[33] The comparison between the spatial pattern and time

series confirms that satellite data well represent the seasonal
variability of dust over North Africa, Central and East Asia, bio-
mass burning over South America, South Africa, Southeast
Asia, and the Sahel. The interannual variability for these aerosol
regimes, as well as urban aerosols over East Asia and North
India, is also captured by MCA modes of the deseasonalized
AOD. Moreover, the results also reflect areas that have previ-
ously been identified as problematic in satellite retrievals, in-
cluding the Kanpur site for MODIS, and South America
for MISR.
[34] To help interpret the MCA results, we also investigate

the spatial representativeness of the AODmeasurement at the
AERONET stations by correlating the time series at each site
with all satellite grid boxes. It is encouraging that the major-
ity of the stations have moderate to high representativeness.
The similarity between the distribution of representative area
and MCA spatial pattern further confirms the validity of
the MCA technique. The lower spatiotemporal coherency be-
tween AERONET and satellite data at some stations, such as
Kanpur, could be attributed to high AOD spatial variability,
as well as uncertainties in the satellite retrievals.
[35] The MCA method is easily extended to the compari-

son of other data sets or variables. And in addition to its usage
in incorporating sparse ground observations, there is no doubt
that it can be applied to two satellite data sets. Finally, the results
presented here do not provide information on aerosol variability
in all regions. Our future work will involve a comprehensive
intercomparison study using other available aerosol retrievals

but relaxing the temporal completeness criterion to more
completely assess the spatial representativeness of the data
and identify where the satellite retrievals have problems. For
example, Europe and North America do not show up in the
leading modes due to their relatively small aerosol loading.
Detailed study of these regions will require localized analysis.
The MCA can also be applied to other aerosol parameters such
as the Ångström exponent (AE). Although the AE products are
generally less reliable, it is useful in constraining aerosol size
parameterization in GCMs and the monthly mean data will be
less noisy. Comparison could also be made between radiance
measurements for specific aerosol regions or scenes, as these
invoke fewer assumptions.
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